欧盟可能会在世界主要司法管辖区的第一个,最严格,最全面的AI监管制度中引入。在本报告中,我们询问欧盟即将对AI的法规是否会在全球范围内扩散,从而产生所谓的“布鲁塞尔效应”。在延长阿努·布拉德福德(Anu Bradford)的工作的基础上,我们概述了可能发生这种监管扩散的机制。我们认为,欧盟的AI法规会激励非欧盟国家提供的产品的变化(事实上的布鲁塞尔效应),以及它将影响其他司法管辖区采用的法规(De Jure Brussels效应)的可能性。我们侧重于拟议的欧盟AI法案,我们暂时得出结论,事实上和德国布鲁塞尔的效应都可能是欧盟监管制度的一部分。事实上的效果尤其可能是在具有AI ACT术语“高风险”的AI系统的大型美国科技公司中产生的。我们认为,即将到来的法规对于提供第一个也是最具影响力的操作,即开发和部署以可信赖或以人为本的AI意味着什么。如果欧盟政权可能会看到大量的扩散,确保其精心设计成为全球重要性的问题。
translated by 谷歌翻译
人工智能(AI)的应用范围是巨大的,危害可能性也是如此。越来越愤怒地对来自AI系统的潜在风险产生了刺激行动,以解决这些风险,同时侵蚀对AI系统的信心以及发展它们的组织。 2019年研究发现了80多个出版和采用了“AI伦理原则”的组织,从此加入了更多。但原则往往会在“什么”和“如何”之间的差距和“如何”的差距。这样的差距已经启用可疑或道德可疑的行为,这促进了特定组织的可信度,更广泛地。因此,迫切需要允许AI开发人员防止伤害的具体方法,并允许他们通过可验证行为来证明其可靠性。下面,我们探索机制(从ARXIV:2004.07213绘制)创建一个生态系统,即AI开发人员可以获得信任 - 如果他们值得信赖。更好地评估开发商可信度,可以为用户选择,员工行动,投资决策,法律追索和新兴治理提供信息。制度。
translated by 谷歌翻译
In recent years, several metrics have been developed for evaluating group fairness of rankings. Given that these metrics were developed with different application contexts and ranking algorithms in mind, it is not straightforward which metric to choose for a given scenario. In this paper, we perform a comprehensive comparative analysis of existing group fairness metrics developed in the context of fair ranking. By virtue of their diverse application contexts, we argue that such a comparative analysis is not straightforward. Hence, we take an axiomatic approach whereby we design a set of thirteen properties for group fairness metrics that consider different ranking settings. A metric can then be selected depending on whether it satisfies all or a subset of these properties. We apply these properties on eleven existing group fairness metrics, and through both empirical and theoretical results we demonstrate that most of these metrics only satisfy a small subset of the proposed properties. These findings highlight limitations of existing metrics, and provide insights into how to evaluate and interpret different fairness metrics in practical deployment. The proposed properties can also assist practitioners in selecting appropriate metrics for evaluating fairness in a specific application.
translated by 谷歌翻译
Partial differential equations (PDEs) are important tools to model physical systems, and including them into machine learning models is an important way of incorporating physical knowledge. Given any system of linear PDEs with constant coefficients, we propose a family of Gaussian process (GP) priors, which we call EPGP, such that all realizations are exact solutions of this system. We apply the Ehrenpreis-Palamodov fundamental principle, which works like a non-linear Fourier transform, to construct GP kernels mirroring standard spectral methods for GPs. Our approach can infer probable solutions of linear PDE systems from any data such as noisy measurements, or initial and boundary conditions. Constructing EPGP-priors is algorithmic, generally applicable, and comes with a sparse version (S-EPGP) that learns the relevant spectral frequencies and works better for big data sets. We demonstrate our approach on three families of systems of PDE, the heat equation, wave equation, and Maxwell's equations, where we improve upon the state of the art in computation time and precision, in some experiments by several orders of magnitude.
translated by 谷歌翻译
Classically, the development of humanoid robots has been sequential and iterative. Such bottom-up design procedures rely heavily on intuition and are often biased by the designer's experience. Exploiting the non-linear coupled design space of robots is non-trivial and requires a systematic procedure for exploration. We adopt the top-down design strategy, the V-model, used in automotive and aerospace industries. Our co-design approach identifies non-intuitive designs from within the design space and obtains the maximum permissible range of the design variables as a solution space, to physically realise the obtained design. We show that by constructing the solution space, one can (1) decompose higher-level requirements onto sub-system-level requirements with tolerance, alleviating the "chicken-or-egg" problem during the design process, (2) decouple the robot's morphology from its controller, enabling greater design flexibility, (3) obtain independent sub-system level requirements, reducing the development time by parallelising the development process.
translated by 谷歌翻译
Recent diffusion-based AI art platforms are able to create impressive images from simple text descriptions. This makes them powerful tools for concept design in any discipline that requires creativity in visual design tasks. This is also true for early stages of architectural design with multiple stages of ideation, sketching and modelling. In this paper, we investigate how applicable diffusion-based models already are to these tasks. We research the applicability of the platforms Midjourney, DALL-E 2 and StableDiffusion to a series of common use cases in architectural design to determine which are already solvable or might soon be. We also analyze how they are already being used by analyzing a data set of 40 million Midjourney queries with NLP methods to extract common usage patterns. With this insights we derived a workflow to interior and exterior design that combines the strengths of the individual platforms.
translated by 谷歌翻译
With the rise of AI and automation, moral decisions are being put into the hands of algorithms that were formerly the preserve of humans. In autonomous driving, a variety of such decisions with ethical implications are made by algorithms for behavior and trajectory planning. Therefore, we present an ethical trajectory planning algorithm with a framework that aims at a fair distribution of risk among road users. Our implementation incorporates a combination of five essential ethical principles: minimization of the overall risk, priority for the worst-off, equal treatment of people, responsibility, and maximum acceptable risk. To the best of the authors' knowledge, this is the first ethical algorithm for trajectory planning of autonomous vehicles in line with the 20 recommendations from the EU Commission expert group and with general applicability to various traffic situations. We showcase the ethical behavior of our algorithm in selected scenarios and provide an empirical analysis of the ethical principles in 2000 scenarios. The code used in this research is available as open-source software.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Information extraction from scholarly articles is a challenging task due to the sizable document length and implicit information hidden in text, figures, and citations. Scholarly information extraction has various applications in exploration, archival, and curation services for digital libraries and knowledge management systems. We present MORTY, an information extraction technique that creates structured summaries of text from scholarly articles. Our approach condenses the article's full-text to property-value pairs as a segmented text snippet called structured summary. We also present a sizable scholarly dataset combining structured summaries retrieved from a scholarly knowledge graph and corresponding publicly available scientific articles, which we openly publish as a resource for the research community. Our results show that structured summarization is a suitable approach for targeted information extraction that complements other commonly used methods such as question answering and named entity recognition.
translated by 谷歌翻译
This chapter sheds light on the synaptic organization of the brain from the perspective of computational neuroscience. It provides an introductory overview on how to account for empirical data in mathematical models, implement them in software, and perform simulations reflecting experiments. This path is demonstrated with respect to four key aspects of synaptic signaling: the connectivity of brain networks, synaptic transmission, synaptic plasticity, and the heterogeneity across synapses. Each step and aspect of the modeling and simulation workflow comes with its own challenges and pitfalls, which are highlighted and addressed in detail.
translated by 谷歌翻译